Distributed hot-wire anemometry based on Brillouin optical time-domain analysis
نویسندگان
چکیده
منابع مشابه
Hot-wire anemometry for superfluid turbulent coflows.
We report the first evidence of an enhancement of the heat transfer from a heated wire to an external turbulent coflow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counterflow m...
متن کاملHigh-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis.
A new scheme for distributed Brillouin sensing of strain and temperature in optical fibers is proposed, analyzed and demonstrated experimentally. The technique combines between time-domain and correlation-domain analysis. Both Brillouin pump and signal waves are repeatedly co-modulated by a relatively short, high-rate phase sequence, which introduces Brillouin interactions in a large number of ...
متن کاملFast Brillouin Optical Time Domain Analysis for dynamic sensing.
A new technique for the fast implementation of Brillouin Optical Time Domain Analysis (BOTDA) is proposed and demonstrated, carrying the classical BOTDA method to the dynamic sensing domain. By using a digital signal generator which enables fast switching among 100 scanning frequencies, we demonstrate a truly distributed and dynamic measurement of a 100 m long fiber with a sampling rate of ~10 ...
متن کاملSpatial resolution correction for hot-wire anemometry in wall turbulence
We investigate spatial resolution issues in hot-wire anemometry measurements of turbulence intensity and energy spectra. Single normal hot-wire measurements are simulated by means of filtering direct numerical simulation (DNS) of turbulent channel flow at Res 1⁄4 934. Through analysis of the two-dimensional energy spectra from the DNS, the attenuation of the small-scale energy levels is documen...
متن کاملNon-Local Effects in Brillouin Optical Time-Domain Analysis Sensors
Brillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2012
ISSN: 1094-4087
DOI: 10.1364/oe.20.015669